Transcriptional profiling after lipid raft disruption in keratinocytes identifies critical mediators of atopic dermatitis pathways.

نویسندگان

  • Conny Mathay
  • Michael Pierre
  • Mark R Pittelkow
  • Eric Depiereux
  • Arjen F Nikkels
  • Alain Colige
  • Yves Poumay
چکیده

Lipid rafts are cholesterol-rich cell signaling platforms, and their physiological role can be explored by cholesterol depletion. To characterize transcriptional changes ongoing after lipid raft disruption in epidermal keratinocytes, a cell type that synthesizes its cholesterol in situ, we performed whole-genome expression profiling. Microarray results show that over 3,000 genes are differentially regulated. In particular, IL-8, urokinase-like plasminogen activator receptor, and metalloproteinases are highly upregulated after cholesterol extraction. Quantitative reverse transcriptase PCR validation and protein release measurements demonstrate the physiological relevance of microarray data. Major enriched terms and functions, determined by Ingenuity Pathways Analysis, identify cholesterol biosynthesis as a major function, illustrating the specificity of keratinocyte response toward cholesterol depletion. Moreover, the inflammatory skin disorder atopic dermatitis (AD) is identified as the disease most closely associated with the profile of lipid raft-disrupted keratinocytes. This finding is confirmed in skin of AD patients, in whom transcript levels of major lipid raft target genes are similarly regulated in lesional atopic skin, compared with non-lesional and normal skin. Thus, lipid raft disruption evokes typical features of AD, thereby suggesting that lipid raft organization and signaling could be perturbed in atopic keratinocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional Analysis of Hair Follicle-Derived Keratinocytes from Donors with Atopic Dermatitis Reveals Enhanced Induction of IL32 Gene by IFN-γ

We cultured human hair follicle-derived keratinocytes (FDKs) from plucked hairs. To gain insight into gene expression signatures that can distinguish atopic dermatitis from non-atopic controls without skin biopsies, we undertook a comparative study of gene expression in FDKs from adult donors with atopic dermatitis and non-atopic donors. FDK primary cultures (atopic dermatitis, n = 11; non-atop...

متن کامل

Pathogenesis of Atopic Dermatitis: Current Paradigm

Atopic dermatitis (AD) is characterized by skin inflammation, barrier dysfunction and chronic pruritus. In this review, recent advances in the pathogenesis of AD are summarized. Clinical efficacy of the anti-IL-4 receptor antibody dupilumab implies that type 2 cytokines IL-4 and IL-13 have pivotal roles in atopic inflammation. The expression of IL-4 and IL-13 as well as type 2 chemokines such a...

متن کامل

Group 2 Innate Lymphoid Cells Express Functional NKp30 Receptor Inducing Type 2 Cytokine Production.

Group 2 innate lymphoid cells (ILC2) are important in effector functions for eliciting allergic inflammation, parasite defense, epithelial repair, and lipid homeostasis. ILC2 lack rearranged Ag-specific receptors, and although many soluble factors such as cytokines and lipid mediators can influence ILC2, direct interaction of these cells with the microenvironment and other cells has been less e...

متن کامل

In Vitro and in Vivo Anti-Inflammatory Effect of a Biotechnologically Modified Borage Seed Extract: Evidence for Lipid Pro-Resolving Mediators’ Implication in the Enhancement of Psoriatic and Atopic Dermatitis Lesions

Aim: Resolvins, maresins and lipoxins are lipid mediators issued from essential polyunsaturated fatty acids which are the first anti-inflammatory and pro-resolving signals identified during the resolution phase of inflammation. As borage oil and/or borage seed extracts have shown beneficial action in treatment of atopic dermatitis or eczema in human and canine, we have modified a borage oil com...

متن کامل

Pathogenetic mechanisms of atopic dermatitis.

Atopic dermatitis (AD) is a chronic inflammatory disease which results from complex interactions between genetic and environmental mechanisms. An altered lipid composition of the stratum corneum is responsible for the xerotic aspect of the skin and determines a higher permeability to allergens and irritants. Keratinocytes of AD patients exhibit a propensity to an exaggerated production of cytok...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of investigative dermatology

دوره 131 1  شماره 

صفحات  -

تاریخ انتشار 2011